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Abstract

Using the critical Ising model of the brain, integrated information as a measure of
consciousness is measured in toy models of generic neural networks. Monte Carlo
simulations are run on 159 random weighted networks analogous to small 5-node neural
network motifs. The integrated information generated by this sample of small Ising
models is measured across the model parameter space. It is observed that integrated
information, as a type of order parameter not unlike a concept like magnetism,
undergoes a phase transition at the critical point in the model. This critical point is
demarcated by the peaks of the generalized susceptibility of integrated information, a
point where the ‘consciousness’ of the system is maximally susceptible to perturbations
and on the boundary between an ordered and disordered form. This study adds further
evidence to support that the emergence of consciousness coincides with the more
universal patterns of self-organized criticality, evolution, the emergence of complexity,
and the integration of complex systems.

Author summary

Understanding consciousness through a scientific and mathematical language is slowly
coming into reach and so testing and grounding these emerging ideas onto empirical
observations and known systems is a first step to properly framing this ancient problem.
This paper in particular explores the Integrated Information Theory of Consciousness
framed within the physics of the Ising model to understand how and when consciousness,
or integrated information, can arise in simple dynamical systems. The emergence of
consciousness is treated like the emergence of other classical macroscopic observables in
physics such as magnetism and understood as a dynamical phase of matter. Our
findings show that the sensitivity of consciousness in a complex system is maximized
when the system is undergoing a phase transition, also known as a critical point. This
result, combined with a body of evidence highlighting the privelaged state of critical
systems suggests that, like many other complex phenomenon, consciousness may simply
follow from/emerge out of the tendency of a system to self-organize to criticality.
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Introduction 1

A growing body of evidence in the past few decades has emerged suggesting that many 2

disparate natural and particularly biological phenomena reside in a critical regime of 3

dynamics on the cusp between order and disorder [1–10]. This seemingly ubiquitous 4

phenomena has sparked a renaissance of new ideas attempting to understand the 5

self-organizing nature of our world [11]. More specifically, it has been shown that 6

critical models, and in particular the Ising model at criticality, model the statistics of 7

brain dynamics quite well [12–15], which combined with evidence of critical variables in 8

brain dynamics has led to the emergence of the critical brain hypothesis [8, 10]. Systems 9

tuned to criticality, self-organized or otherwise, exhibit a number of useful informational 10

properties that allow for the efficient distribution of and susceptibility to 11

information [6, 10,15–17]. These ideas have been further developed to suggest more 12

broadly that critical systems are evolutionary advantageous and stable attractors for 13

systems living in complex environments as they are more effective at reacting to their 14

environment and ensuring their continued survival [18–20]. 15

Integrated Information Theory 16

In order to approach the problem of consciousness a working definition is needed and as 17

such, this project attempts to understand and explore one emerging model known as 18

integrated information theory (IIT) [21]. IIT is a top-down, phenomenological approach 19

to defining consciousness [21]. Starting from phenomenological axioms the theory 20

constructs mathematical postulates that create a workspace for researchers to test and 21

explore this particular definition of consciousness and all its associated controversies. 22

Ultimately, the main measure proposed by IIT is the mathematical object called 23

integrated information (Φ) (Big Phi) which generally seeks to measure ‘how much the 24

whole is greater than the sum of its parts’ of a causal structure. Though other measures 25

exist [22] which try to capture some form of integration or complexity, this paper will 26

use Φ as its main metric. For a wholesome overview of the mathematical taxonomy of 27

the possible variations in defining integrated information, see [23]. 28

Unfortunately, many calculations in the theory prove to be intractable, scaling 29

super-exponentially with respect to the size of the system of interest, resembling a 30

high-dimensional ‘traveling salesman’ problem at certain stages of the algorithm. To 31

measure integrated information one needs to have access to the transition probabilities 32

of the system. In other words, something like the partition function, the Markov matrix, 33

or the structure of the causal model is needed. Naturally this is information we are not 34

always privy to when it comes to complex phenomena like brain dynamics. This 35

problem is circumvented by using a sufficiently simple model where the transition rates 36

can be readily calculated. Furthermore, if one wants to understand the human brain 37

and experience of consciousness within the language of IIT, some sort of bridge needs to 38

be built to link IIT and brain dynamics. Therefore, to solve the problem of 39

computational intractability and contextualize our work within the human condition, 40

the Ising model of the brain is employed to address both problems. 41

The Critical, Generalized Ising Model 42

The generalized Ising model acts as this bridge by virtue of the model’s ability to 43

exhibit phase transitions and critical points as well as being the simplest (max entropy) 44

model associated with empirical pairwise correlation data [18,24]. Historically, it was 45

the 2D Ising model that first demonstrated the ability to exhibit a phase transition at 46

some critical temperature Tc, a global scaling parameter of the model. More recently, it 47

has been shown to also exhibit similar statistical structures to that of the brain which is 48
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also thought to be a critical system and has given rise to the Critical Brain 49

Hypothesis [2–10,14,16,25–29]. This quality allows this seemingly crude and simple 50

model to relatively accurately recreate the pairwise correlation structures and 51

distributions to that of the human brain and acts as a proxy to the brain simply by 52

sharing some universal characteristic with it. By taking advantage of this, albeit 53

roughly defined, shared universality class between the critical Ising model and the Brain, 54

we can study the Ising model through the scope of IIT and attempt to project our 55

results onto the Brain. 56

The crudeness of the 2D Ising model can be slightly overcome by generalizing its 57

interactions such that they are not confined to only nearest-neighbors and instead can 58

use any general structural connectivity that is given as input. This generalization allows 59

us to model not just 2D lattice interactions but also more generally, simple neural 60

network motifs. To this end, the Ising model is simulated on 159 randomly generated, 61

positive weighted networks to explore the combinatoric space of neural network motifs. 62

Each unique network exhibits its own idiosyncratic phase transition as measured across 63

a variety of its natural variables. Φ and its susceptibility χΦ is also measured across the 64

parameter space of these models, fitting in quite naturally among the other natural 65

variables commonly used in the physical paradigm such as Energy (E), Magnetization 66

(M), or Magnetic Susceptibility (χ). Simulations sweep across the model’s only 67

parameter, the temperature of its surrounding heat bath. As this parameter is swept 68

from low to high temperatures, larger and larger energetic fluctuations become likely. In 69

many cases, as this parameter is swept the organizational structure of the system can 70

dramatically change, exhibiting a phase transition. This abrupt change in quality as a 71

result in a continuous change in a particular quantity is at the heart of many of the 72

most interesting complex systems such as genetic networks [30] societal organizations, 73

financial markets [31,32], or swarming behaviours [33,34]. The critical points where 74

these transitions are located are demarcated by the ‘critical temperature’ (Tc) of our 75

generalized model. 76

Schematic Overview 77

In Equation [1] an overview of the strategy employed in this paper is summarized. Ising 78

simulations are run given a connectivity matrix and temperature (J, T ) with the 79

outputs: correlation matrix, magnetization, integrated information, and the 80

susceptibilities of magnetization and integrated information, all as a function of the 81

temperature
[
ρsim,M,Φ, χ, χΦ

]
(T ). These outputs are used to identify the critical 82

temperature of the model as well as allow the observation of the behaviour of integrated 83

information in the model. 84

fIsing(J, T )→
[
ρsim,M,Φ, χ, χΦ

]
(T ) (1)

Emergence of Complexity 85

Results indicate that the integrated information generated in the Ising model, much like 86

the classical variable ‘Magnetization’ as a macroscopic order parameter, undergoes a 87

phase transition at the model’s critical point. This is detected by locating the peaks of 88

its susceptibility curves as a function of temperature [35]. This result is important 89

because it indicates that the integrated information structure of simple neural networks 90

can behave critically, exhibiting maximal susceptibility to perturbations and allowing 91

for a form of consciousness that balances coherence and continuity with information and 92

variance. If integrated information is a good description of consciousness, this implies 93

that the phenomenon of consciousness may just be the next branch in the big family 94
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tree of phase transitions and an evolutionary attractor. These results fit into a larger 95

paradigm that seeks to understand the nature of evolution and the adaptive advantage 96

of critical systems in the context of a universe undergoing a cascade of phase 97

transitions [36,37]. 98

Results 99

Model Simulations 100

159 Ising simulations were generated using N = 5 nodes, fully-connected networks with 101

random weights. Summary statistics were calculated for all simulations as a function of 102

the fitting parameter T : magnetization M , integrated information Φ, the magnetic 103

susceptibility χ, the generalized susceptibility of integrated information χΦ, and 104

variances across all the random network samples σ2
J(O). 105

Averaging these variables across all random networks shows a strong parallel 106

between the behaviour of Magnetization M and integrated information Φ generated by 107

the system (Fig 1). Near the onset of criticality (generally be approximated by the peak 108

of the magnetic susceptibility curve [35]) integrated information, much like the 109

magnetization in the Ising model, undergoes a phase transition which is seen as a peak 110

in the susceptibility of Φ. The regime where the fluctuations of integrated information 111

are maximized suggests a transition point for integrated information as an order 112

parameter. Our results predict that the phenomenon of criticality extends into the 113

behaviour of integrated information on the Ising model. 114

Fig 1. The summary statistics for the two order parameters, Magnetization M and Φ
(panels A, B) across all the 159 random network simulations are shown. The variance
of Φ, χΦ = σ2

t (Φ) (panel D) is interpreted as a susceptibility of Φ and is compared to
the magnetic susceptibility χ (panel C). These susceptibilities peak at the same critical
temperature indicating the phase transition of integrated information as an order
parameter in the Ising model.

Of the 159 of random networks simulated, only 6 demonstrated the ability to 115

maximize Φ at criticality while the rest had the general tendency to decrease Φ as a 116

function of temperature, though not necessarily monotonically. A peculiar behaviour 117

observed in a symmetry breaking of integrated information is that individual Φ(T ) 118

functions are split into two branches near the critical point. This peculiarity is still not 119

yet understood as the causal structure of the Ising model is expected to be symmetric 120

under system flips. 121

In Fig 1 summary statistics for the order and susceptibility parameters of the 122

random networks are shown. Magnetization M and its corresponding susceptibility χ, 123

are plotted in the left-most column, and Φ and its susceptibility χΦ are plotted in the 124

second column. In Fig 2 the variance of these variables across the different random 125

network connectivities (σ2
J(M), σ2

J(χ), σ2
J(Φ), σ2

J(χΦ)) are shown. The variances σ2
J 126

illustrate the control exhibited by the choice of connectivity onto the order parameters 127

across the uniformly sampled random networks, whereas the susceptibilities quantify the 128

mean fluctuations of those order parameters within each random network, averaged 129

across all random networks. These summary statistics give first-order insights into the 130

diagnosis and control of simple neural networks. We note that at the critical 131

temperature, denoted roughly by the peaks of χ, the susceptibility of Φ, χΦ also peaks. 132

When looking at Φ across different simulations, σ2
J(Φ), we observe that there seems to 133

be two transition points. One transition point at low temperatures leading into a 134

plateau region followed by a second transition close to the classical critical point where 135
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the variations in Φ begin to fall off. These results highlight the regions where changes in 136

the structural connectivity of the model have the most influence on the generation of 137

integrated information. While the magnetization of the model near criticality is 138

maximally sensitive to changes in the structural connectivity, integrated information 139

instead has a broad plateau region of uniform sensitivity. This result is useful in 140

assessing how structural changes in a system can lead to functional changes which are 141

capable of generating integrated information or consciousness. 142

Fig 2. The variance of the order parameters M , Φ (panels A, B) and their
susceptibilities (panels C, D) across different connectivities are plotted. These plots
demonstrate the potential control one can impart on the Ising model by changing the
connectivity matrix. Notably, the potential control reaches a local minima at the
critical temperatures of the model, indicating a convergence to a universality class.
However, local maxima surrounding the critical point indicate the possibility to control
the transitions towards criticality.

Discussion 143

Phase Transitions & IIT 144

To investigate the properties of this new measure of integrated information introduced 145

by IIT we have in this study employed the relatively simple Ising model to act as a 146

proxy to the real brain. The Ising model is generalized to use any graph as its 147

connectivity where in this study we have looked at 159 random networks of 5 nodes. 148

The results from the Ising model analyzed with IIT show that integrated information 149

tends to be maximally susceptible at the critical temperature (Fig 1). The statistics of 150

the 159 random networks summarize these results across variations of fully connected 151

connectivity matrices to show that while there exists a rich variety of Φ(T ) curves, on 152

average the ‘susceptibility’ of Φ(T ), (χΦ(T )), behaves quite similarly to the magnetic 153

susceptibility that is normally the marker for the second order phase transition of the 154

classical 2D Ising model. These results indicate that integrated information can more 155

broadly be considered as a macroscopic order parameter which seems to undergoes a 156

phase transition at the critical temperature of the model. To generate a taxonomy of 157

the possible phases that integrated information could exhibit would require a much 158

more thorough exploration of the possible structural connectivities and dynamical rules 159

that a system could obey. This project confined itself to the Ising model on fully 160

connected graphs obeying the Metropolis algorithm. In the future as more efficient 161

algorithms for calculating Φ emerge (or as a compromise accurate correlates of Φ) 162

combined with Monte Carlo and network renormalization group methods [16, 40–45] the 163

exploration of larger networks of different classes (e.g. sparse, modular hierarchical, 164

small-world, fractal) could lead to the identification of a rich taxonomy of phases of 165

integrated information. 166

Control 167

When considering the control that can be exerted onto this Ising model by changing 168

network edge weights, it is clear that at the critical point, the system reaches a local 169

minima in the influence that changing the connectivity of the network can impart on 170

the system’s general susceptibilities (Fig 2, panels C, D). This is consistent with the 171

notion that these critical Ising regimes converge to identical (or similar) universality 172

classes and therefore varying the networks in this regime imparts a minimal change in 173

the general susceptibility of the system. However, on the edge of criticality, the 174
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generalized susceptibilities’ exhibit local maxima, both in the case of the magnetic 175

susceptibility χ and the integrated information susceptibility χΦ. In other words, on the 176

approach towards criticality, maximum control can be exerted onto such networks when 177

it comes to modulating their general susceptibilities. In fact, there is some evidence to 178

believe that the brain is not exactly critical and rather it deviates slightly towards 179

sub-criticality [46,47]. Therefore this experiment gives credence to the notion that a 180

sub-critical system may be easier to control and therefore lends evolutionary/adaptive 181

advantages in life. This control only begins to decrease in the super-critical regime 182

where other properties of the system also begin to fall apart and any evolutionary 183

advantage is likely lost. 184

Evolution & Complexity 185

The exploration of integrated information in the context of critical systems undergoing 186

phase transitions motivates a few new questions in regards to the relationship between 187

evolution, complexity, and consciousness. In the work done by [55,56] on complexity 188

and the evolution of neural models and integrated information, it was shown that fitness 189

can correlate strongly with Φ when the system is constrained in size/resources. While it 190

is not always true that a system will evolve to generate high Φ under more liberal 191

constraints (infinite resources), it does seem to be that there may be some evolutionary 192

advantage for having high Φ. Since Φ essentially measures the emergence of 193

higher-order concepts within a system, intuitively it may not be surprising that systems 194

that are capable of generating higher-order concepts will be capable of representing and 195

reacting to a more diverse set of states than systems that cannot. Therefore for 196

resource-limited systems, having an efficient means to represent internal and external 197

states may automatically give rise to high Φ or consciousness. 198

It is fair to think of integrated information as a type of complexity measure as it 199

aims to measure how mechanisms in a system interact and constrain each other in 200

emergent and irreducible ways. The theory aims to measure emergent properties of a 201

system that cannot be explained by independent (or semi-independent) components of 202

that system. The measure is sensitive to not just information, which in general can be 203

maximized by deterministic systems with unique pasts and futures, but also to the 204

distribution and integration of information which in general can be maximized by 205

strongly coupled systems. To have a system that is both strongly coupled and 206

informative requires a balance between segregating forces that act to differentiate the 207

system into diverse states as well as coherent, integrating forces that create new forms 208

of information that could not otherwise arise from the individual components. In a 209

system like the Ising model, it is expected that these exact properties emerge near the 210

critical temperature at the onset of its phase transition. 211

Utility of Criticality 212

By definition, critical systems have diverging correlation lengths, undergo critical 213

slowing-down (integration in space and time), and simultaneously exhibit distinct and 214

segregated structures at all scales (scale-invariance). They are generally found in 215

regimes of systems undergoing some kind of transition between different phases (e.g. 216

magnetized vs. non-magnetized in the Ising model, or synchrony vs. asynchrony in the 217

Kuramuto model [48–52]) . In contrast to sub-critical regimes which can become 218

completely uniform due to their strong coupling (high integration, low differentiation) 219

and super-critical regimes which can become completely noise driven (low integration, 220

high differentiation), critical systems sit in the sweet spot to generate non-negligible Φ 221

that is maximally susceptible to the perturbations of its environment and its own state. 222

Our results indicate that while sub-critical regimes are capable of generating high Φ, the 223
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variations in Φ in this regime are negligible. Only near the critical point does Φ have 224

both large values and large fluctuations indicating that the critical point of the system 225

is maximally receptive and responsive to its own states. 226

Conclusion 227

The novelty of our study is best framed in the larger context of the emerging complexity 228

of our world [36] and criticality in physics where the definitions suggested by [53,54] go 229

so far to define complexity as the ”tendency of large dynamical systems to organize 230

themselves into a critical state”. For example it has been shown that in neural tissues 231

and in a cortical branching model (which is not too different from the classical Ising 232

model) that neural complexity is maximized at criticality [6] or that the minimal 233

complexity of adapting agents increases with fitness [55]. Even more broadly it has been 234

shown that criticality may be useful for learning [9], and for optimizing information 235

processing [10,18,19]. Therefore, the novelty of this study is that by using the 236

framework of IIT to define consciousness, we show evidence that consciousness as a 237

property of matter can undergo a phase transition at criticality which, combined with 238

previous evidence that the brain may be critical, suggests that consciousness as we know 239

it may simply arise out of the tendancy of the brain to self-organize towards criticality. 240

The importance of this conclusion lies in the fact that this ancient problem of 241

understanding and defining consciousness may ultimately be best framed and 242

understood within the physics and evolutionary dynamics of self-organizing critical 243

systems. 244

Future Work 245

It is clear that both the magnitude and susceptibility of Φ in the Ising model (and in 246

general) are extremely sensitive on the exact nature of its connectivity and the dynamic 247

rules that govern it. The nature of a phase transition that a system may exhibit is also 248

contingent on these properties (though disparate systems can fall into the same 249

universality classes). So far our simulations were run on static networks, but in general 250

one can let the network itself evolve. Future work interested in how the networks 251

themselves arise could explore different evolution algorithms under different dynamical 252

rules in combination with the analysis from IIT to assess the role of evolution and 253

environment in generating Φ. Exploring the behaviour of Φ in different classes of phase 254

transitions could further develop the ideas behind the critical brain hypothesis and 255

coerce the fields of neuroscience, complexity science, material science, and statistical 256

mechanics to work together to understand the brain. In a way that is analogous to the 257

modular but integrative organization of the brain, these distinct disciplines in science 258

will need to integrate with each other if humanity hopes to understand complex 259

integrative systems like the brain, the societies we live in, and the cultural, or 260

economical and socio-political organizations that have emerged with the rise of human 261

civilization. 262

Materials and methods 263

Ising Model 264

The Ising model is one of the simplest ways to model many-body interactions between 265

simple elements. Traditionally these elements are described as ‘spins’ which can be in 266

one of two states, si = {±1}. Though the implementation of the model started from the 267

humble origins of modeling the macroscopically observed phenomenon of phase 268
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transitions, the Ising model has found applications and generated insights in almost all 269

domains of life. Since the ‘spins’ in the model are abstractions, the ‘spins’ can represent 270

any element that can be described in a binary state. When modeling the brain, these 271

spin elements represent neurons or clusters of neurons with ’firing’ or ’not firing’ binary 272

states. Furthermore, the model in its original 2D format was organized into a lattice 273

grid with spin elements interacting only with their nearest-neighbours and a heat bath 274

of temperature T . In the generalized Ising model, we no longer constrain the system to 275

be in a 2D lattice and instead allow any general graph to describe the connectivity Jij 276

between elements i and j.The energy of the model in a particular configuration ~s is 277

given by: 278

E(~st) = −
∑
〈ij〉

Jijsisj −
∑
i

hisi (2)

where the summation 〈ij〉 is over all connected elements and hi is a locally applied 279

field or bias (which is set to 0 in this experiment). In order to bring the model to 280

equilibrium, Metropolis update rules are used where a random element in the model is 281

chosen and allowed the possibility for a ‘spin-flip’. A spin-flip will occur if the energy of 282

the system decreases after flipping, or if the energy increases, then the flip will occur 283

with a probability given by the Boltzmann factor: 284

p (si → −si) = e
−4E
kBT if ∆E > 0

= 1 if ∆E ≤ 0
(3)

The temperature in the model affects the rate at which ‘unfavorable’ spin-flips occur; 285

increasing the temperature increases the noise/randomness of the model’s dynamics. 286

Within each time step in the model, all spins have the opportunity to flip once, 287

updating simultaneously for the next step until the process is repeated for some desired 288

number of times steps. When the system has had enough time to equilibriate past its 289

transient initial state, observables in the model are measured repeatedly and 290

accumulated to generate equilibrium expectation values. 291

Summary Statistics 292

The summary statistics for observables O measured in this experiment are defined 293

below. The magnetic susceptibility is shown separately. 294

〈Ox〉 =
1

Nx

Nx∑
i

= Oi (4)

χO = 〈O2〉 − 〈O〉2 = σ2
t (O) (5)

χ =
〈M2〉 − 〈M〉2

T
(6)

σ2
J(O) = 〈〈O〉2〉J − 〈〈O〉〉2J (7)

〈Ox〉 is the expectation value of an observable across some dimension x and for x = t 295

time steps, Nt = 2000 is the number of observations in a simulation after an initial 500 296

time steps to thermalize the system. χO is the generalized susceptibility [19,38,39] and 297

σ2
J(O) is the variance of an observable across all networks. The magnetic susceptibility 298

(χ) is written separately as it is derived from the Free Energy potentials of the Ising 299

model. 300
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Random Networks 301

159 fully connected networks of 5 nodes with random edge weights uniformly sampled 302

between 0 and 1 are generated. The networks are then normalized such that their 303

strongest weight is always unity. These random networks are saved as connectivity 304

matrices and fed into the Monte Carlo Ising simulations. These random networks are 305

designed to explore the combinatoric space of the neural network motifs possible when 306

constrained by 5 nodes. 307

Phi 308

Integrated Information (Φ) is calculated (using the pyPhi python toolbox [21]) in the 309

5-node Ising model for 2000 iterations after the model reaches a steady-state which is 310

assumed to be achieved after 500 iterations. To calculate Φ a transition probability 311

matrix (TPM) must be supplied which we can denote as a Markov matrix (M), as well 312

as the configuration of the system at that time-step (~st) (Equation 8). Calculating the 313

TPM requires the calculation of probablities from any configuration to any other by 314

iterating Equation 3 across all spin sites that need to flip for the transition to occur and 315

taking their product. 316

〈Φ〉 =
1

Nt

Nt∑
t

Φt(M,~st) (8)
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